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Summary

This paper describes in detail the process of rendering a radiance field represented with 3D
Gaussian splats interactively using GPU (Graphical Processing Unit) acceleration and tiled
rendering, based on the implementation described in the original paper [1]. It outlines the
maths behind the rendering equations, as well as describing how they can be implemented on
the GPU. A GPU approach to depth sorting is also described in detail. Results and analysis of
my implementation are also provided, where it can be seen that | successfully implemented a
rasteriser using OpenGL compute shaders which can render millions of splats interactively.
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Chapter 1

Introduction

A light field is a function which maps from any given point in space, and viewing direction at
that point, to the light information you would see when looking from that point in that direction,
for a given scene [2]. There are many ways to approximate this function [3]4} 5] 6], but this
paper focuses on rendering a light field stored using a set of 3D Gaussian splats (also referred
to as just splats or a splat throughout the paper) to represent a radiance field. Each scene is
made up of hundreds of thousands of discrete splats, which together approximate the light
field function. They can be rendered interactively, and in real time, to generate high quality
renderings. This paper will describe and justify an implementation that mostly follows the tiled
and projected rendering implementation in the seminal paper [1]. The rendering method
utilises integration along the viewing ray described in EWA (Elliptical Weighted Average)
splatting [7] to project the scene to the viewing plane, before sorting efficiently using a GPU
sort [8], and rasterising the image using alpha blending [9]. The rendering method utilises the
parallel nature of GPU compute shaders to achieve desirable rendering times. | implemented a
renderer using C++ and OpenGL compute shaders which rendered scenes interactively, that
could be explored using keyboard controls.

My aim for my project was to render Gaussian splatting scenes and be able to move a camera
around the scene to render different views interactively. In order to achieve interactive
rendering, GPU acceleration must be utilised. There are several frameworks for programming
on the GPU. Some frameworks are designed for general purpose GPU (GP-GPU) programming,
such as OpenCL and CUDA, whereas others are designed for graphics applications, such as
OpenGL, DirectX, Metal, and Vulkan. | wanted to have interactive rendering, which means my
application needs to display the render and take keyboard inputs, so the GP-GPU frameworks
were not chosen. DirectX and Metal are only available on Windows and Apple devices
respectively, and | preferred a cross-platform option, so these were not chosen. Both modern
OpenGL and Vulkan provide the tools | needed - compute shaders and the ability to easily
display the output. Vulkan would have likely provided a performance bonus over OpenGL, but
there is less abstraction in Vulkan, meaning it is easier to write programs for OpenGL. | am
familiar with OpenGL, so it was my chosen framework. | chose to use C++ as the programming
language to interact with OpenGL for a number of reasons. C/C++ is the language the OpenGL
bindings were written for, and | am familiar with using OpenGL with C++. | used the CLion IDE
to write my project, making use of the debugging tools. Git was used for version control, with a
remote on GitHub.



Chapter 2

Literature Review

2.1 LightFields

Plenoptics and light fields are a long studied field. The term light field originates in the 1939
book titled The light field [2]. The book proposes that each point in space, and each direction
to each point, can be assigned a quantity representing the light at that point and direction. The
book describes a light field as a function mapping from five inputs, the position and direction
in 3D space, to the light visible at that viewing vector [2]. This function could be considered as
the sum of various illumination distribution solids - functions that describe the light emitted by
points in space, or the sum of various light fields for each light source [2]. These are
unsatisfactory as a representation of a complex real life scene, and the forward of the
translation calls for a better representiation, proposing using tensor methods in five
dimensions. The fundamental point is that the light field, or plenoptic function, is a
five-dimensional function describing the flow of light at every 3D position (z, y, z) for every 2D
direction (9, ¢) [5].

In 1996, two papers, the Lumigraph [5], and Light Field Rendering [6] proposed methods to
represent a light field, and render them to produce new images. They describe capturing a light
field from real life. The Lumigraph uses photos taken from known (or calculated) positions,
and depth information estimated using knowledge of the geometry of the scene to generate
its light field representation. The paper notes that traditional computer graphics techniques
would struggle to achieve the complexity of the geometry and lighting effects [5]. This is due
to the abstraction of complexity when using real world, complex input data (photographs) to
train an approximate representation. Both the Lumigraph and Light Field Rendering do not
provide methods to approximate the full 5D function, and put viewing restrictions on the virtual
camera. The Light Field Rendering requires viewing rays to pass through two specific planes,
and neither allow the camera to explore inside the light field, meaning they can only represent
objects, not scenes [5]6].

Radiance field is a term used to refer to the field of light emitting/reflecting from surfaces.
This contrasts to light field, which model the field of light received at a point. Light fields model
what you would see with your eyes, so are what we desire to reach to visualise images.
Radiance fields contain all the information needed to calculate light field information at a
point, and render an image. This can be done by stepping through the radiance field until we
accumulate the radiance for that viewing vector. This matches the rendering techniques for
modern radiance field methods, such as Neural Radiance Fields (NeRF) and Gaussian
splatting, which both can render using either ray marching [3] or direct (approximate)
integration [1]. It can be argued that radiance fields are a representation of a light field, as light
field data can be directly and precisely computed, and this conversion from radiance field to
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light field is needed to render images. The main distinction is that while radiance fields must
have some model of the surfaces in a scene, a light field does not necessarily need to know
about the geometry of the scene.

Neural Radiance Field rendering (NeRF) was introduced in 2020 as a new method to represent
a light field [3]. They represent the full continuous function of the radiance field, able to be
sampled from any position, unlike the previously described methods [3]/5]6]. This is achieved
by training a neural network which maps the function from a 5D coordinate (z, y, z, 6, ¢) to an
RGB colour. Unlike traditional light fields, instead of the 5D coordinate being the position of the
viewing ray, the 5D coordinate is the vector of light emission (or reflection, which is not
different in this representation). The idea to capture the radiance field instead of received light
marks a difference from the previously described methods, which attempt to store the light
field as how it is received, not emitted. NeRF are rendered using a weighted sum of samples
along the camera ray. Much like the previous methods, they are trained using images and
camera position information. The quality of NeRF resulted in a large amount of research in the
field, with many papers building on the original implementation.

One drawback to NeRF is that in order to convert to the light field, the radiance field must be
sampled many times, in a process called ray marching [3]. This is costly, and results in slow
rendering times. This is addressed with an alternate method, Neural Light Field (NeLF)
rendering. Here, the network only needs to be sampled once for each viewing ray, as the light
field is directly stored instead of obtaining it from a radiance field. There are additional
benefits to NeLF over NeRF such as better rendering of non-Lambertian effects in practice, but
it does not achieve desirable rendering times [10].

Another drawback is that the sampling in ray marching is at discrete points, which can result in
aliasing artifacts. Multiscale Representation for Anti-Aliasing Neural Radiance Fields
(Mip-NeRF) solves this by encoding the radiance field differently, and rendering by tracing
conical frustums, instead of infinitesimally small rays. This results in no more aliasing
artifacts. Additionally, it provides significant performance improvements over standard NeRF,
partly due to containing a representation for the scene at different scales in one encoding [11].
This method still uses a neural encoding of the radiance field, and requires many samples in
the ray marching step of rendering.

One more drawback is that neural representations are not easily editable. Some
implementations of light/radiance field rendering propose different encodings of the
light/radiance field than neural networks, such as Plenoxels [4], and 3D Gaussian Splatting [1].
These encodings are discrete representations that could be manipulated in 3D space to
manually improve, crop, and edit scenes. Much like all the NeRF methods, scenes could be
trained using gradient descent from images and camera locations. Plenoxels represent a
scene as a sparse 3D grid with spherical harmonics [4], whereas 3D Gaussian splats
represented scenes as a set of 3D Gaussian splats [1]. Gaussian Splatting provides better
performance with current methods than Plenoxels [T} 4].
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2.2 Splatting

Splatting is a volume rendering technique, first proposed by Westover [12]. Westover’s later
thesis, Splatting [13], describes splatting as throwing splats at a wall, which flatten and spread
across the wall. Splats thrown later obscure splats thrown earlier. As more splats are thrown,
an image emerges on the wall. Each splat has an opacity and a colour. The opacity determines
how much of the light behind it is blocked, and the colour gets blended with the background
colour based on the opacity [13]. Westover describes in this paper a method for rendering
volumes using splatting. It involves sampling the rendering volume using a splat kernel of
choice, and then rendering the splats. The rendering can be performed by calculating the
footprint function for a splat, then calculating how it contributes to each pixel in the image.
Evaluating the footprint function requires an integration, which varies depending on the kernel
function [13]. This method carries through to my implementation, which roughly follows the
same steps.

It should be noted that unlike my implementation, the original splatting used splatting kernels
to sample an arbitrary representation of a volume, instead of directly representing the volume
as splats.

Using a Gaussian Kernel for splatting was proposed in the Westover’s Splatting Thesis [13], but
it was fully defined in EWA Volume Splatting [14]. EWA volume splatting defines equations for
integrating (projecting) the Gaussian kernel, which were used for my implementation and
outlined in Chapter[4] Using Gaussians as the splat kernel has certain features that are ideal.
Gaussians have 2 particular features that make them appropriate for splatting. Gaussiains are
closed under affine mappings and convolution, and integrating a 3D Gaussian results in a 2D
Gaussian. [14]. These features allow better sampling of the projected splats.

2.3 Radiance Fields with 3D Gaussian Splatting

A Gaussian distribution, or normal distribution, is a continuous distribution, typically
representing a probability distribution, described by Equation[2.1] and described by Gauss [15].

1

oV 2w

flz) = 355 2.1)

This can be generalised to a multi-variate Gaussian distribution to represent higher
dimensions. X represents an N-dimensional Gaussian distribution, and

X ~N(p,X) (2.2)

1 1
NX|p,B) = ————
where p is an N-dimensional vector representing the mean of the distribution in each

dimension, and X is an N x N covariance matrix of the distribution [16]. When used in

exp{— 5 (X — )57 (X — )} (2.3)

splatting, the value sampled from the covariance matrix at a point represents the density of
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the splat - which corresponds to the opacity we will see.

3D Gaussian Splatting for Real-Time Radiance Field Rendering [1] defines a new technique for
rendering radiance fields, using splatting with the splats represented as three-dimensional
Gaussian distributions. Representing scenes as splats provided faster rendering times than
previous methods, such as NeRF, while maintaining scene quality. The models themselves for
both NeRF and Gaussians can be created via software that takes in photos and outputs the
models. The creation of models for Gaussian Splatting is a faster process than for NeRF,
showing another benefit. Splatting scenes can be rendered alias free [17], eliminating the
aliasing problems found with NeRF, and solved with Mip-NeRF.

Gaussian Splatting models are generated using gradient descent. A set of splats are initialised
from the point field generated by Structure from Motion (SfM). The splats are then optimised
iteratively using gradient descent against a set of input images of the scene the splats must
represent. Adaptive density control is used where splats can split or combine to reduce or
increase the resolution of splats at specific points in the scene where needed. The models |
used for my test renders were generated using this technique, and sourced from the internet.

Tiled rendering is used to achieve faster rendering times. Tiled rendering for Gaussian
splatting was inspired by the rendering used for Pulsar, a previous rendering technique [18,1].
It involves splitting up the splats into tiles (a 16x16 grid in the original paper [1]) on the screen
they correspond to at render time. This reduces the number of splats that need to be
considered for each pixel, resulting in the desired fast rendering times.

3D Gaussian Splatting for Real-Time Radiance Field Rendering [1] concludes that this is the
first approach that "that truly allows real-time, high-quality radiance field rendering, in a wide
variety of scenes and capture styles, while requiring training times competitive with the fastest
previous methods." Real-time for the paper is defined as frame rates > 30fps, run on an A6000
GPU [1], which is a massively faster device than the device my benchmarks are run on, the
integrated graphics of an AMD Ryzen 5 pro 5650u APU, and 16GB DDR4 RAM. The paper
shows quality on par or slightly better than Mip-NeRF rendering, making it the state of the art
for radiance field rendering [1].
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Methods

3.1 Splats

The splats need to contain the information to calculate the light field data at any point. Splats
are aligned roughly to surfaces of geometry, so in order to capture non-Lambertian effects
(lighting that means a point on a surface may look different when viewed from different
angles), splats must be an anisotropic (different values from different viewing angles)
representation. There are three main components to each splat. The first is the mean, or
central location of the splat. This defines where in the scene it resides, and is isotropic, so can
simply be represented by a three-vector. The other two components are the opacity and the
colour, which define how the splat contributes to the lighting. In order to make the opacity
anisotropic, it is represented as a 3D Gaussian distribution. The weight of the distribution is
sampled when rendering to calculate the overall opacity, and sampling a Gaussian distribution
is dependent on the incident angle, making it anisotropic. There is also a base opacity, which
combines with the Gaussian-sampled opacity to calculate the overall opacity. The colour can
also be represented anisotropically with a spherical harmonic, but the anisotropic properties
of the opacity are sufficient for a reasonable scene quality, so this is omitted from my project
to limit scope. Hence, the colour is simply represented as an RGB value.

3.2 Rendering

Rendering a scene requires sampling every splat for each pixel, in order from front to back, and
blending the colour together to work out the value for the pixel. Before sampling, the splats
must be transformed from world space to screen space. World space is where things are in
the 3D virtual space that maps to the real world, and how they are stored in this case. Screen
space is the space where the x-y axis of the scene is the screens’ width and height, and the
z-axis (depth) is the distance from the camera, normalised between zero and one [19]. There
are two separate elements that need transforming from world space to screen space for
rendering. The first element is the mean of the splats, which can be transformed using a matrix
transformation. The second element is the Gaussian distribution, which gets flattened along
the z-axis using an integration [7]. The exact equations for these are described in Chapter [4|

To understand how we sample the Gaussian, the Gaussian should be interpreted as a density
field, where the weight maps to a density. In order to calculate the transparency along a
viewing ray, the density field must be summed up all along the ray. This could be achieved with
a ray-tracing based approach, where the density is sampled at intervals along the ray to
calculate the overall density. This would be computationally expensive, due to needing to have
a calculation at many sample points, for every pixel, for just one splat. This would also
introduce aliasing due to the sampling rate. If the sampling rate is less than the Nyquist
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frequency (double the frequency of the data being sampled), then we will miss splats in the
scene [20]. This can be avoided with sufficiently high sampling rates but this comes with
significant performance cost. Instead, we can integrate the 3D Gaussian to sum up the density
through the viewing ray in one computation. This produces a 2D Gaussian, which can then be
used by each pixel to calculate the contribution of the splat. A ray-tracing approach for one
splat would require sampling the 3D Gaussian many times for every pixel, but this approach
requires computing a 2D Gaussian once via a numerical method integration, and then
sampling that 2D Gaussian once for each pixel [1], providing a significant performance bonus,
and eliminating aliasing issues along the z-axis.

Once the opacity for a splat is computed for a pixel, it must be blended (together with the
colour) with the opacity and colours of all other splats. The alpha blending technique used is
similar to the GL_ONE_MINUS_SRC_ALPHA blending mode in OpenGL [9], and updating the
destination alpha to the new value. The exact computation can be seen in Equation 3.1 and
Equation[3.2] The exact equation for this is described in the implementation. The blending
operation is not commutative, so the splats must be blended in a particular order, front to
back. This means the splats must be sorted before the blending takes place. An example of a
scene rendered without ordering can be seen in Fig.[3.1]

C represents a colour, with Cy being the original colour, and C; being the new colour. A colour
has four components - the rgb colours and the « opacity.

C1,7’gb =1- (Cl,a * (1 - (CO,a) * Cl,’rgb + (CO,rgb (31)
Cra=a+ (1-Coa) (3.2)

Figure 3.1: Render without depth sorting
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3.3 Sorting

Splats are sorted based on their depth from the camera. Splats cannot be sorted before
projecting them, as their depth is only known after the projection occurs, meaning they must
be ordered at run time. The depth is relative to the camera, so as the camera moves about the
depth value changes, and must be recalculated by re-projecting the splats, leading to the
choice of sorting the splats each frame. There are far too many splats to sort the splats after
render time, using a sort-last approach [21] - an approach where each splat gets rendered
individually, and then composited based on sorting. Sorting them individually for each pixel
would be wasteful, as the order is shared between each pixel, and the same sort would need to
be redundantly performed for each pixel. Thus, the splats should be sorted first, and each pixel
deals with pre-sorted splats, so splat contributions can be calculated in order, and blended
before the next splat is calculated.

3.4 Tiling

Tiled rendering is the idea of splitting the rendering process into separate sections for different
"tiles" on the screen. For the case of splatting rendering, tiled rendering means splitting the
screen up into tiles, and only considering splats which are inside the corresponding tile for
each pixel. Some splats will be considered for more than one tile, but most splats will not,
meaning that the number of splats considered for each pixel is reduced by approximately the
number of tiles. This reduces frame times for rendering. There are implementation specific
trade-offs, discussed in the implementation section. Gaussians are unbounded, so each splat
has some contribution to every point in space, and so will always contribute to every tile.

To solve this problem, a bound is calculated which contains almost all of the density of the
Gaussian. This is calculated as a bounding box which contains at least three standard
deviations of the Gaussian [22][7]. There are two different standard deviations for a 2D
Gaussian (what we have after projection), aligned to two axis. The larger value of the two can
be used as the radius of a bounding circle which will contain both standard deviations. The
bounding circle is actually enlarged to a bounding box to simplify calculations as the tiles will
also be square, due to the shape of displays. The standard deviation can be calculated as the
square root of the larger eigenvalue of the 2D Gaussian. The eigenvalues of a covariance
matrix are the variances along their corresponding eigenvectors. Standard deviation is the
square root of variance [23]. Three standard deviations is equivalent to 99.7% of the density of
a Gaussian distribution, meaning that the contribution of a splat outside the bounding box is at
most 0.3%, which is less than the resolution of an RGBAS8 output, which has increments of
1/256, or 3.9%. The 0.3% s derived from the error function erf(%) = 0.997 where three is the
number of standard deviations and 99.7% is the amount of domain within those three standard
deviations.
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Implementation

The process of rendering a splatting scene takes five stages in my implementation, outlined in
Fig. The pre-process, bin size calculation are defined each in a single compute shader, but
the sorting is a several step process.

_—
{ Preprocess \
Bin size calcuation
Projection
l _t
Bound & Tile
calcuation Drawing

- s o
l

Depth Sorting Display

Figure 4.1: Pipeline stages of my Gaussian splatting renderer

4.1 Splats

There is not yet a standard file format for a Gaussian splat file, but the following data must be
encoded for every splat:

* The mean (central location) of the splat
+ The covariance matrix for the Gaussian distribution of the splat
+ The opacity of the splat

+ The colour of the splat

In my implementation, there is a buffer for each of these values. There is a buffer of
three-vectors for the means, a buffer of floats for the opacities, a buffer of three-vectors for the
colours, and a buffer of floats (interpreted as 6-vectors) for the covariance matrix. The
covariance matrix is a three by three matrix, however it is symmetrical, meaning only six of the
nine elements are stored in the buffer, and the full matrix gets extracted when needed.
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4.2 Pre-processing

Each splat must be projected in the pre-processing stage. There are two separate values to
project - the mean and the covariance matrix. The mean is transformed using a standard view
projection matrix. Equation[4.1]gives us the mean in clip space. It can then be converted to
screen space using Equation[4.2] This gives us a three-vector representing the location of the
mean, with the first two elements being the location on the screen, which are stored into a
projected mean buffer. The third element is the depth, which is used later in this shader.

w represents the mean of the splat. P represents the projection matrix, and V' represents the
view matrix. W represents the width of the screen in pixels, and H represents the height of the
screen in pixels. 3 represents the 3D covariance matrix, and X’ represents the integrated 2D
covariance matrx.

Heclipspace = PxV x Hworldspace (4.7)

Hscreenspace = <Nclip3paCe’m x* W Kclipspace,y * H) (4.2)

The covariance matrix is not a single point like the mean, and must be integrated to be
converted to screen space. An exact integration is not possible, and instead a Taylor
expansion approximation is used, using the first two terms [7,22].

Y =JsxVsXx Vs gl (4.3)

where J is the Jacobian, defined as follows:

fi 0 _fz*tz
ts t2

j=|0 £ s (4.4)
0 O 0

Equation 4.4 and Equation [4.3]are defined first by EWA splatting [7}122]. Here f, is the focal
length of the camera along the x-axis, f,, is the focal length of the camera along the y-axis, and
t is the projected mean.

The 2D covariance is a diagonal matrix. This means that it can be compressed from a three by
three matrix to a three-vector as follows, where ¥/, denotes the diagonal of the 2D covariance
matrix:

Sa= (S 2, 2,) (4.5)

The alignment for a vec3 in an OpenGL buffer object is the same as the alignment for a vec4 in
an OpenGL buffer object, both take up 16 bytes [24]25]. This means that it will take the same
memory to store a buffer of vec3s as a buffer of vec4s. To overcome this issue, the 2D
covariance diagonals are stored in a vec4, with the first three elements being the diagonal, and
the fourth element being the opacity of the splats, which is used together with the 2D
covariance when the memory is later read. This means that reading the opacity now comes
together with reading the 2D covariance at no extra memory cost.
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The covariance is also normalised by dividing it by its determinant, so that it can be sampled
later in pixel space.
2
det(X') = X4, *Xg, — Xq, (4.6)

;o
The final stored value, X¢, ., is

¥ ! >
/ — d,z _ dy dz 4.7
stored <det(2/) det(Y)  det(Y) O‘) (47)
where « is the base opacity of the splat.
The bounding box of the splat is then calculated with the eigenvalues of the 2D covariance
matrix. BL represents the "bounding length" for the bounding box, or half the length of any side
of the bounding box.

/ /
dx+2dz

m= # (4.8)

A =m+ /m? — det(X) (4.9
Ao =m — /m?2 — det(¥) (4.10)
BL = 3 x y/max (A1, \2) (4.17)

PM is the projectedMean and BB contains the four corners of the bounding box.

gg _ ((PM:—BL,PM, +BL) (PM. +BL,PM, +BL)
~ \(PM, —BL,PM, —BL) (PM, +BL,PM, — BL)

The tiles the bounding box overlaps with are then calculated. A key for sorting is generated
that combines the tile index and the depth value, with the tile index contained in more
significant bits than the depth value, as shown in Fig. Some bounding boxes may overlap
with more than one tile. These splats get duplicated so they can be rendered in all relevant
tiles. They are duplicated by adding another key to the end of the key array, and adding an
index to an index array which points to the correct splat location. The end of the array is
tracked by an atomic counter, and the size of the array is capped as it is stored as a buffer.
This means that it must be decided before rendering the maximum number of duplicates that
will be needed. | chose to leave space for each splat to be duplicated an average of one time,
or a buffer length of 2 x n, where n is the number of splats. There are some viewing angles
where the duplicate space becomes saturated, and rendering quality suffers, but these were
rare in my experimentations.

There are trade-offs to using tiling. Using an atomic counter to track the end of the array is
expensive. Additional memory must be used to store the duplicated splats, and there are up to
double the number of keys to sort. For a GPU radix sort, the time complexity is O(k % n), where
n is the number of keys to sort, and & is the number of digits in each key. n may be doubled,
and k is increased by eight for a case where 256 tiles are used. We go from k at 16, in the case
where we encode the depth to 16 bits, to k as 24, or a 1.5 increase, and up to a 2x increase in
n, resulting in up to 3« increase in sorting time. The number of tiles should be a power of two,
so that it can fit in a discrete number of bits with no redundancies. The more tiles, the more
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duplicates, but the fewer tiles, the more splats to consider for each pixel. The number of tiles
appropriate for a scene can be discovered experimentally. In my case, it was 256.

Key to sort

Maost significant bits Least significant bits

Tile index Depth

Figure 4.2: Breakdown of the components of the key

4.3 Sorting

After the pre-processing occurs, the sorting must take place. The buffer of keys that is
generated is a buffer of floats, and there is an index buffer which are the splat indexes the keys
correspond to. The index buffer gets sorted by the order of the key buffer. There is also an
auxiliary buffer which is the same size as the index buffer. Between each step of sorting, the
index buffer gets moved into the auxiliary buffer so the sorting doesn’t need to occur in place.
The auxiliary buffer then becomes the index buffer (by swapping by reference) for the next
stage of sorting, until the sorting finishes.

Sorting can take place on the GPU or the CPU. Previous papers such as the one by Satish et al.
[26] have examined the difference in speed between CPU and GPU sort implementations
finding that their CPU radix sort was 20% faster than their GPU radix sort. Despite this, it still
makes sense to use a GPU radix sort for the case of splatting. Millions of splats must be
sorted, and the splats begin on the GPU. This means to sort on the CPU, the data must be
transferred from the GPU to the CPU and then back. The time taken to 1,000,000 floats from
the CPU to the GPU takes over 500ms on my target machine from experimentation. 500ms is
significantly longer than the time to sort 1,000,000 splats on the GPU directly (82ms). If
sorting the splats every frame, then the GPU cannot perform other tasks while the CPU sorts,
so there isn't a benefit from the advantage of CPU-GPU asynchronicity. This means that the
overhead of transferring the data from the CPU to the GPU makes any performance benefit of
a CPU sort over a GPU sort redundant, so a GPU sort should be used.

There are multiple options of sorting algorithms on the GPU such as the bitonic sort [27], and
the parallel radix sort [8]. Following the original paper on rendering splatting radiance fields [1],
| implemented a parallel radix sort.

Radix sort relies on the principle of sorting on each "digit" in the numbers separately, while
remaining stable between each digit's sort. The algorithm works well with using keys to sort,
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which is needed. There are three separate sections, split into three different shaders, to a radix
sort. The shader invocation flowchart can be viewed in Fig. In order to effectively
parallelise the algorithm, data is split into small sections to be handled by separate threads.
Each thread first generates a local histogram for that section in the first step. Then, in the
second step, the local histograms are prefixed, first for each thread’s local offset within the
bucket, and then once for the entire array. This means that the buffer to store the histograms
in must be 16 * (N + 1) elements long, where NV is the number of threads. This also means
that there isn’t necessarily a speedup if more threads are added, as each thread must have
read/writes to memory for the local histograms. Finally, the third step calculates where to
place each value, and inserts each value into the correct location in a secondary buffer. This is
calculated for each value as the global prefix sum for the bucket, added to the local prefix sum
for this thread. The local prefix sum for the bucket for the thread is then incremented.

Generate
histograms

¥

Prefix sum
histograms

Insert values

Have we done
this 8 times?

es

Figure 4.3: Radix sort stage overview

The secondary buffer and original buffer are then swapped by reference, as the secondary
buffer contains the correct sorting to this point, and the values in the original buffer are
redundant and can now be overwritten in a future stage.

This all results in a stable sort for the digit. When performed for each digit, the array becomes
fully sorted, as desired.
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There are additional optimisations to make. Where threads need to fetch several identical
items of the same data from global memory, it is more efficient for them to distribute the
fetching between the threads, utilising shared memory. In the third step, the global prefix sum
is fetched into shared memory, one value for each thread, reducing 16 global reads for each
thread to one global read, one shared write, and 16 shared reads, resulting in better
performance. Another optimisation is to utilise parallel scan algorithms [28] for prefix
summing where appropriate, which | use to calculate the global prefix sum.

It should also be noted that while it is possible to perform all these operations in a single
shader invocation, there must be synchronisation of threads between steps. My chosen
platform, OpenGL compute shaders, does not allow for synchronisation between work groups,
so it was necessary to split the steps into separate shader invocations for this case unless |
only wanted one work group, but it is not necessary for all cases.

Tile 1
least
CIDEEST ...................... c|059.
splat
P splat
Tile 2
least
CIDEESt oooooooooooooooooooooo c|ose.
splat
P splat
Tile 3
least
CIDEESt oooooooooooooooooooooo c|ose.
splat
P splat

Figure 4.4: Demonstration of how sorting works with tiles

The way space in the sorted buffer corresponds to tiles is demonstrated in Fig. where
each tile’s splats are internally sorted in a group for each splat. In order to extract the tile
groups from the sorted splats, the sizes of each of the 256 tiles must be calculated, and then
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using those sizes to work out the start and end index of each tile section. This corresponds to
the Bin size calculation stage The algorithm for counting the size of each tile works by
initialising an array of length 256 to 0, one element for each tile, then dispatching a thread for
each splat, and atomic-incrementing the index for the tile that splat belongs to. Due to the
large number of bins (256), the atomic operation is largely not blocking, however, optimisation
may be possible by considering more than one splat per thread, or utilising shared memory.
The end of each bin can then be calculated by performing a prefix sum over the tile histogram.
My implementation utilises a parallel scan algorithm [28] to efficiently distribute the
computation across 256 threads. Unfortunately, the drawing stage cannot be executed until
this prefix sum is complete, so all other SIMD (Single Instruction Multiple Data) units but the
256 for this operation remain un-utilised during the computation. The start index of each tile is
the end index of the previous tile, or 0 for the first tile.

4.4 Draw

Given a set of depth sorted, projected splats, there are multiple ways to rasterise them. |
explored two different ways in my solution. Regardless, the same equations can be used to
alpha blend, and the same equations to sample the splat. The alpha of the splat is calculated
at a pixel using Equation [4.13|[22]. That « value and the colour of the splat col are then used to
blend with the current colour of the pixel using Equation[3.1/and Equation (3.2} described
earlier in the methods section. There is also an early out, where rendering for a pixel is stopped
when its alpha value is close to one, so more blending will have no change to the colour as any
additional values to blend will be insignificant.

p represents the pixel position on the screen.

d=p- Hscreenspace (4~12)

/ 0.5 (2 xdy *dy (4.13)

— “stored,z

2 / 2
* dm + Esz‘ored,z * dy)

/ /
stored,x ~ “stored,y

[0
The first way | explored was to rasterise the splats by drawing each splat in order. This meant
for each splat, going through each pixel inside the bounding box, and adding that splat to the
pixel. This method works quite efficiently in serial, as blending isn’'t needed for pixels which are
outside of these bounding boxes. Unfortunately, each splat must be drawn sequentially due to
the need for depth ordering, so drawing must be synchronised between each splat, so this is
not an appropriate method for GPU parallel rendering. | used this way to implement a "ground
truth" CPU renderer to compare my optimised GPU renderer with. There is no compromise on
the quality of the renders when rendering in this method, it precisely renders the splatting
scene. | wrote this renderer in C++ using vectors instead of GPU buffers, and did not make use
of any parallel processes. Each iteration of the for loop would take the next closest splat, and
calculate the contribution the splat made for each pixel in the bounding box, before blending
with the pixel value if the contribution was not very small (and would not be visible at all).

The second way | explored was to rasterise the splats by drawing each pixel independently.
This means going through each splat in order for every pixel. Parallelising this is trivial, as
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each pixel is calculated independently and so can be computed in separate threads with no
synchronisation. The draw back of this is that the bounding boxes aren’t being fully taken
advantage of, even with tiling, and there are thousands of global memory reads per thread.

| wrote this in one shader program, where each thread calculated the colour for one pixel,
meaning there was one thread for every pixel. The thread iterated through each splat for the
tile, calculating the contribution and blending. When the pixel became saturated (o > 0.99), or
there were no more splats to iterate over, the thread had finished and the pixel colour was
written to a texture. To overcome the bottleneck of many global memory reads, | made use of
work groups and shared memory. So long as each thread in a work group corresponds to a
pixel in the same tile, the threads need the exact same splats. This means that reading the
splats from global memory can be distributed, so that each thread reads one splat at a time to
shared memory. The size of the work group is limited by the amount of shared memory
available, as each thread needs to be able to read at least one splat. The resolution of the
screen must also be chosen such that each work group resides in only one tile, so that the
splats are shared. This optimisation resulted in a speedup of over five times for work groups
sized 8x8, allowing for real time rendering for small scenes, and interactive rendering for larger
scenes.

The Draw shader program is a compute shader, and writes to a texture but doesn't have the
ability to display the texture to a screen. A Display shader program takes this texture and
displays it on the screen. It works by rendering one screen-sized quad, which renders out the
texture calculated in the Draw stage. The entire render pipeline has gone from projection to
display without splat data being passed to or from the GPU to the CPU. There is some data
that must be passed over, however. The camera location is updated on the CPU. There is a
camera C++ class which tracks the cameras transformation. This transformation gets
updated by keyboard inputs. The camera has functions to generate the view and projection
matrices, which are called to pass as inputs to the pre-process shader. The camera also keeps
track of the screen resolution.

4.5 Testing

There are many components to the project which all needed testing. Some of the components
could be tested using automated testing, and those tests were written using the GTest
framework. The sort was tested by comparing its output to a sort performed by the C++
standard library sort, implemented with GTest. The file loader was also tested using GTest,
with a test created that compared the result of the file loader with a set of expected values.

Testing the rendering sections was a lot more difficult. A CPU renderer was implemented,
which the different rendering sections could be integrated with. The GPU sections were
non-deterministic, so the output couldn’t be exactly compared with the CPU output, and
automated testing wouldn’t work. Instead, | could input a section at a time to the CPU renderer,
and see if the results (visual image) were as expected. This is not as effective testing as
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automated tests written with GTest, but there was no expected output to compare with. The
outputs of each stage were also too abstract to directly inspect, which is why they were
integrated with the CPU renderer to inspect the full rendered image. Inspecting the rendered
image involved comparing with the output of the CPU renderer to check it matched, and
working out what was causing discrepancies when they did not match.
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Results

5.1 Renders

(b) CPU render, rendered per splat precisely, ground truth (4015ms)

Figure 5.1: GPU and CPU renders of a large scene (3,616,103 splats)

In Fig. [5.7/and Fig. [5.2] there are rendered images from two different scenes. | implemented a
CPU renderer which renders an image precisely by drawing each splat one at a time, with no
tiling or quality compromising optimisations, which | consider as a ground truth for rendering
the splats. It can be seen for both of them the GPU renders are very similar to the ground truth.
There are small artifacts visible in Fig.[5.2a] There are not similar artifacts visible in Fig. [5.1al
The artifacts are temporally consistent, and are most likely due to the different encoding used
for the CPU and GPU render, not due to inaccuracies in the rendering. Otherwise, an almost
perfectly matched image can be seen, with over six to eight times reduction in rendering time.
This shows the optimisations in the GPU render did not sacrifice on the quality of the
rendering, but still provided significant performance improvements to achieve interactive

18
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rendering. For even smaller scenes than the bonsai tree Fig.[5.2] real time rendering can also
be achieved, with 30FPS being reached when scenes are limited to 100,000 splats, and 60 FPS
being reached when scenes are limited to 50,000 splats.

However, there is one case where slight compromises are visible. Exemplified in Fig.[5.3} when
the number of duplicates required is more than the memory allocated to duplicate into, some
splats are left un-rendered for some tiles. This results in some visible tile lines. In the case of
Fig.[5.3] there is memory allocated to allow duplication of 272,956 splats, but there were more
duplicates required. This problem can be overcome by a few methods. The first is to simply
allocate more memory for duplicating splats than is required, which can be calculated through
testing various viewpoints. The other is to reduce the number of duplicates required, which
can be done by choosing scenes which don't have such large splats that span across so many
tiles.

(a) GPU render, with tiling and optimisations (72ms)

(b) CPU render, rendered per splat precisely, ground truth (588ms)

Figure 5.2: GPU and CPU renders of a smaller scene (272,956 splats)
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Figure 5.3: GPU render, with tiling visible due to duplication saturation

5.2 Timings

All timings were performed on the integrated graphics of an AMD Ryzen 5 pro 5650u APU and
16GB DDR4 RAM on Ubuntu at 1024x512 pixels

Frame Time Breakdown over 160 Frames
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Figure 5.4: Frame time breakdowns for rendering a large scene (3,616,103 splats) across all
frames as a stacked line graph

The chart in Fig. 5.4 shows the frame time breakdown across 160 frames for a large scene. As
the frame times were captured, the camera was moved all around the scene, rendering from
various viewpoints. It can be seen in Fig.[5.4]that as the camera moves around, the frame time
varies, however the only component that varies is the draw time. It is expected that the draw
time would vary as the camera moves around, as different view points will have different
numbers of splats culled. Around frame 120, it is likely the viewpoint was moved to a position
where less splats were in view. Unfortunately, the other stages cannot take advantage of the
culling and so remain relatively stable across all frames.
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Mean Time Breakdown for Different Numbers of Splats
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Figure 5.5: Mean frame times for three different scenes with varying numbers of splats.

The most significant stages are the draw and sort, while the bin and display time take an
insignificant amount of frame time. The computation in the draw stage is less complex than
the computation in the pre-process stage, but the draw stage takes over 5x the frame time.
This is because each thread in the draw stage has large numbers of memory reads, which take
far longer than the complex maths calculations in the pre-process stage. The sort time's
contribution is the expected time to sort millions of keys [26].

Fig.[5.5|shows how the contributions to frame time, and overall frame time, change as the
number of splats change. From algorithmic analysis it is expected for the overall rendering to
scale with O(XV), and the significant components, pre-processing, sorting and drawing, to also
scale with O(V), where N is the number of splats. From Fig.[5.5] this appears to be true for
the pre-processing and sorting stage, which grow linearly between the three scenes. However,
the draw stage does not follow a linear growth, it actually takes less time in the largest scene
than the second largest scene. This can be explained by a larger amount of culling occurring in
the largest scene, which leads to less data to process for the draw stage. The sort stage not
following the draw stage in being faster indicates that it is not due to more resources being
free on the machine at the time of measurement, and the sort stage is where the culled splats
are discarded, so it wouldn't be expected to see any improvement due to culling in the sort
stage.
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5.3 Reaching real time rendering

5.3.1 Alternate rendering

Figure 5.6: Debug render displaying the number of splats contributing to each pixel. Fully white
means 255 or more splats contribute to that pixel. Fully black mean there are no splats con-
tributing to that pixel. The maximum contribution was 271.

It is discussed earlier how tiled rendering can improve frame times by reducing the number of
splats considered per pixel. However, there are major drawbacks. When a pixel is outside of
the bounds for a splat, there is no need to render it, as it will not be visible on a computer
screen. For the large scene, each tile contained 10000 splats, so each pixel was considering
that many. It can be seen from Fig.[5.6|that most pixels have very few splats contributing to
them, and the pixel with the highest number only had 271. Considering at least 50x as many
splats as needed is not ideal, and alternate methods of rendering should be considered. This
consideration of too many splats is somewhat negated by the use of work groups to store
splats in shared memory, but there is still a big performance hit. Rendering each splat by
drawing to the pixels within its bound is a method that does not result in this massive
overdraw. Unfortunately, this is not easily parallelised, as discussed earlier, due to the need to
render the splats in order, but each pixel within the bounds for an individual splat can be
parallelised. The overhead of calling millions of shader invocations to draw each splat is too
much to consider this method with my chosen framework, OpenGL compute shaders, but with
an alternate framework where shaders can be invoked directly on the GPU or queued it is
worth considering this alternate algorithm.

5.3.2 Taking less time to sort

The time to sort is a significant portion of the rendering time, particularly for larger scenes, as
shown in Fig. In order to achieve real time rendering, this contribution to frame time must
be reduced. The chosen sorting algorithm, parallel radix sort, is of time complexity O(K x N)
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[8]. There are alternate implementations of a parallel radix sort such as the one-sweep [26],
which can provide some speedup, but | will focus on how to improve the sorting time for this
specific case, rather than improve the sorting algorithm itself.

N is the number of splats to sort, so reducing the number of splats to sort will reduce to the
time to sort linearly. In my implementation, no culling occurs before the sort, with the sort
moving the culled splats to the end of the array in its process. An implementation which
performed culling before the sort stage would reduce the number of splats that needed to be
sorted. Timings | took with sample data showed that in practice the sort scales slightly less
than linearly. The sort takes 82ms for 1,000,000 splats, 38ms for 500,000 splats, and 16ms for
250,000 splats. This shows that there is an even greater benefit than expected to reducing the
number of splats to sort.

K is the number of digits that make up the numbers. In my implementation | sort on a full 32
bit float. The keys can be encoded to fewer bits than this. Eight bits of the number are needed
to encode the 256 tiles. The remaining data to encode is the depth. The precision needed to
encode the depth is not exactly known, and depends on the quality of output desired. The
bottom right tile of renders (indexed 255), has the depth stored in 16 bits, as there are only 16
bits available in a float32 to store numbers between 255 and 256, so its clearly possible to
encode the entire key in 24 bits (six 4-bit digits) or less, with eight bits for tile index and 16 bits
for the depth. If the key can be encoded into fewer bits, then there will be a linear speedup of
the sort. The algorithm takes 82ms to sort 1,000,000 splats with eight 4-bit digits, 68ms with
six 4-bit digits, and 42ms with four 4-bit digits. This is the expected linear speedup.

The previous ways to improve sorting still allow for precise sorting each frame. However this
is not always needed. With a tiled rendering technique tiles must be sorted into each frame,
but this is only a quarter of the sorting time. Additionally, there are alternate rendering
methods which do not use tiling but still require the sorting. While rendering with no sorting
can have undesirable results, such as Fig. [3.1] rendering with an almost sorted list can
produce acceptable results. Many implementations such as [29] distribute the sort across
many frames, and have acceptable results. My radix sort implementation consists of 24
shader invocations, which could be all distributed across different frames with little overhead.
This means | could reduce the frame time of sorting to 1/24 of the current time, with the
sacrifice of precision of the sort. This precision is unimportant when the view changes very
little, as the depths from the camera do not change too much, however if the view changes
significantly between sorts then there will be visible artifacts as the sorting will not be correct
for that view point at all [30].

Further research should be carried out to determine how small the keys for sorting can be
compressed, how often sorting must occur for reasonably visual quality. The radix sort is a
sorting algorithm that sorts an array exactly, however if sorting doesn’t need to occur every
frame, that means that visual quality is acceptable when splats are mostly sorted, but not
entirely. This means it is worth investigating using approximate sorting algorithms that will run



CHAPTER 5. RESULTS 24

faster than the radix sort to achieve faster frame times.

5.3.3 Rendering with fewer splats, and compressing splats.

Rendering scenes with fewer splats leads to much faster frame times, as evidenced by
Fig.[5.5] Even with the smallest scenes tested, the frame times in a renderer such as mine
which doesn't compromise on precise rendering are not real time. Faster times can be reached
without compromising by simply rendering even less splats in the first place. There have been
methods created to create these smaller scenes such as [31], which can compress a 1,400,000
splat scene to 500,000 splats, which would result in almost a 3x increase in FPS. Additionally,
a large amount of the frame time from the Draw shader comes from fetching the splat data
from memory. Methods which allowed nearby splats to share colour data, or other data, could
help reduce the time taken to draw, as the data would only be fetched once for multiple splats.
Further research should be undertaken to explore whether rendering with fewer splats and
compressing splats can result in better frame times, and how best to compress splats for
rendering speed. If splats can be significantly compressed and reduced, the memory impact
will be reduced, along with noticeably faster frame times, making splatting a more viable
option for software like video games which have tight memory and frame time budgets, and
allow lower spec devices to run splatting scenes.

5.4 Integrating with traditional rendering

Gaussian splatting can work together with traditional geometry rendering. It is possible to
calculate an approximate depth buffer for a splatting render, which can then be used to
combine with a traditional render to create a hybrid render. If the splatting model was
generated with the same lighting as is present inside the scene, they may combine quite well. |
believe the best use case for splatting together with traditional rendering is to replace the high
frequency parts of a scene which geometry cannot capture well due to aliasing [20]. However,
due to the nature of splats being unbounded they do not suffer from edge aliasing.
Additionally, when generated using the method outlined in the original paper [1], they do not
suffer from high frequency aliasing when rendered from the distance of the input images.
There are also methods of rendering which result in alias free rendering from all viewing
positions, which integrate across each pixel to render an exact image [17]. One element of
scenes that often suffers from aliasing effects is foliage.

| believe it is worth researching using splatting to render high quality foliage in real time,
together with traditional rendering for the less high frequency sections. A pipeline to render
splats together with geometry could make use of geometric bounding of splats in the scene to
replace the tiling method | used. A splatting scene or object could be divided up into small
boxes in world space. If splats were bounded into small enough boxes where each box
contained few enough splats that one pixel could manage them, then there would be no need
for tiling. This would keep the benefits of tiling, without the need to sort into tiles every frame,
and without the overhead of duplicating splats. Splats could also be culled easily before the
sorting stage, as splats in boxes which are not visible on screen could simply be discarded.
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Performing the draw stage in the fragment shader of the surfaces of the boxes would mean
that the fast GPU rasterising hardware would manage what splats need to be considered by
what pixels. Such a method would eliminate tiling while keeping the benefits and not the
drawbacks, allow for better and easier culling, reduce sorting time as no tiling sorting is
needed, and culling occurs before the sorting stage, and simplify managing the splats relevant
to each pixel by running it in the fragment shader for the box.



Chapter 6

Conclusion

The literature review outlines the research that led to Gaussian splatting for radiance fields, by
going through the history of the two main ideas it combines - splatting and light fields. This
gives good context for what the Gaussian splatting scenes are representing, and why the
renderer works as it does.

The project was successful in its goal of rendering Gaussian splatting scenes interactively
with camera controls. Scenes were rendered with sub-second frame times, and with little
compromise on the rendering quality. The pipeline created for rendering was described in
detail. Evaluation of the implementation considered the limitations of it, and how other
methods may provide improvements to reach real time rendering, suggesting some future
research that could be done, including a proposal for a method to implement with traditional
rendering. The breadth of options to improve the rendering time show that it is likely possible
to implement an effective real-time Gaussian renderer, but the suggestions of these
optimisations came from evaluation of my own renderer, so could not be taken advantage of
without another large iteration of software development, which would be outside the scope of
the project. Optimisations that did not require investigation were made and outlined in the
implementation, bringing the renderer from offline timings (several seconds per frame), to
interactive frame rates (less than one second per frame). All together, this means that | have
implemented a program which takes keyboard inputs, and renders and displays the view from
a virtual camera in a Gaussian Splatting scene at an interactive frame rate, utilising GPU
acceleration and other optimisations.
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Appendix A

Self-appraisal

A.1 Critical self-evaluation

| am overall pleased with my project. | met my main goal of creating an interactive splatting
renderer. A successful splatting renderer was created, and | achieved interactive frame rates
on low spec hardware. During my project, | had to change my goals, as | had initially over
scoped my project, as | underestimated the difficulty of debugging a project like this. The
outputs of each stage being seemingly abstract data stored on the GPU, in very large
quantities, meant | struggled to work out what was wrong when things didn't work. Eventually
this was overcome by rewriting sections from scratch incrementally so | could ensure they
were working.

I made the choice to begin my project by implementing the GPU radix sort. All of the code for
the project was written from my understanding of papers and tutorials online, and there are
more resources for implementing a radix sort than implementing a splatting renderer. This
made it a good starting point, as it was easier to learn how to implement, but still taught me
how to understand algorithms from technical papers to transfer to software. It was also a
great learning source for how to write the compute shaders, as it was far easier to debug and
the processes were less abstract to me. Later, | did come back to the radix sort and improve it,
when | knew exactly how it would integrate with my full renderer.

Achieving a working renderer took a lot of time, but by re-scoping my project and originally
beginning programming early, | still managed my time well and did not find myself
overwhelmed with work for the programming section. |1 did find | didn’t leave as much time to
write the report as | would have liked. | was able to write the full report by the deadline without
having to compromise on the quality of the report, but | found | was spending a larger
proportion of my time in the final two weeks before submission writing the report than | would
have liked. To add more depth to the research, and ensure | properly backed my claims with
high quality references, | spent more time than | expected reading around the subject, which |
didn't mind as | found the subject really interesting, but for example reading a 100 page book
set me back about a day.

A.2 Personal reflection and lessons learned

| am very pleased with what I've learned through this project. Not having a way to evaluate if
my project was working, and not having an iterative process was a big mistake at the start.
After | fixed those errors, things got a lot easier, and | will begin projects with small goals and
methods of evaluation in future. | learned a lot about GPU programming through the project. |
had used compute shaders for a couple of projects before, but never as effectively as | did
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here. | learned how to better make use of the GPU hardware, and also learned good algorithms
for parallel programming which | can use again in future, such as the radix sort. It was a good,
if tedious, experience debugging such a complex project (once | had a method to do so), and
certain things which caused issues with my project may come up again, and I'll be able to spot
them much faster.

Through both my research and implementation, | gained a much greater understanding of how
radiance fields and Gaussian splatting work. | understand much better what the scenes are
actually representing, how the rendering works, and why it runs at the speed it does. |
presented my project to prospective students on an open day, and found | could answer every
question they had about my project and Gaussian splatting, so | am confident | have gained a
good understanding of how it all works.

In future, | will aim to have a better understanding of what my goals involve before | begin to
undertake them, so | don't over scope like | did with this project

A.3 Legal, social, ethical and professional issues

A.3.1 Legalissues

The models used for the project were not generated by me, but sourced from the internet. The
datasets to train the models are open source, as are the models used by me. | do not distribute
the models | used with my source code regardless. Open source code that is not written by me
was modified and used to generate tests for the file reading, but the code is distributed with
the MIT license. | include the MIT license in my own distribution as required.

External libraries used (GTest, GLEW, GLFW, OpenGL) are open source, and aren’t included in
my repository.

A.3.2 Social issues

Systems such as Gaussian splatting make it easier to acquire a 3D scene from photographs
for non-technical individuals. Scenes could be created which violate an individuals privacy, for
example if a scene was created using a video of somebody’s home without their consent. A
license could be included if the software was distributed that forbids malicious use cases.

A.3.3 Ethical issues

Gaussian splatting rendering is very resource intensive. When more resources are utilised on a
computer, more power is drained. If Gaussian splatting was commonly adopted in games or
another popular use case, it would mean these software generate more energy than they likely
would otherwise. With sufficient users, this extra energy usage could have a genuine impact
on the environment. Responsible distribution of software that utilised Gaussian splatting
could use money generated from sales to invest in more green energy, so the extra energy
used by Gaussian splatting comes from renewable, non-harmful sources.
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A.3.4 Professional issues

The project was developed following good software engineering principles. The code is
written to be readable, with descriptive variable names and comments. The development was
tracked throughout using Git. Licenses have been followed appropriately.



Appendix B

External Material

The images rendered by my software used models | did not create. There were two models
used for images in the write up - the bike scene, and the bonsai scene.

Bonsai: https://huggingface.co/datasets/dylanebert/3dgs/tree/main/bonsai/point_
cloud/iteration_7000

Bike: https://huggingface.co/datasets/dylanebert/3dgs/tree/main/bicycle/point_
cloud/iteration_7000

All .cpp, .h, and .glsl files are my own code. Python files for generating test data use open
source code not written by me. The Python files contain a mix of my own and open source
code. The open source code can be found here:
https://github.com/limacv/GaussianSplattingViewer/blob/main/util_gau.py.
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